Patterns and Controls on Spring Oxygen Depletion in Chesapeake Bay Jeremy Testa and W. Michael Kemp February 16 2011 ASLO Aquatic Sciences Meeting CBEO Chesapeake Bay Environmental Observatory ## Outline #### Motivation - -Understanding the onset of hypoxia and associated habitat degradation - -Better understanding of spring O₂ aids summer prediction - -Traditional focus on Chesapeake O₂ depletion is on summer period, but spring period is when hypoxia develops #### Chesapeake Bay Oxygen Controls - -Algal decay and physical forcing interact to deplete O₂ - -Mechanisms non-linear and linked #### Modeling of O₂-Depletion - Statistical models suggests secondary controls on O₂ depletion ## Seasonal Evolution of Low-Oxygen Water in Chesapeake Bay # Chesapeake Bay Oxygen Dynamics ## O₂ Depletion Rates Vary Along Axis # Spatially Dependent Flow-O₂ Depletion Relationship - Higher freshwater inflow has little impact on O₂ depletion rates in upper hypoxic zone, but elevates rates in lower hypoxic zone - Correlation with annual measures is poor # O₂ Depletion Rates Positively Correlated with Spring Chl-a - Higher spring chl-a in surface layer leads to elevated O₂ depletion rates in middle and lower hypoxic zone - More labile organic material = more rapid O₂ depletion - Simple calculations suggest sinking surface POC sufficient to fuel calculated O₂ depletion rates ## High Flow Pushes Chl-a Seaward Higher freshwater inflow pushes surface layer leads chl-a peak seaward, but bottom layer chl-a elevated everywhere along axis Seaward shift in peak O₂ depletion rates #### Multiple Linear Regression Models Indicate Secondary Controls Middle - Jan-May Surface Layer Chl-a Hypoxic - Fraction of March-May winds from NW Region - Susquehanna Jan-April Flow Lower - Jan-May Surface Layer Chl-a Hypoxic - Fraction of March-May winds from W Region - Susquehanna Jan-April Flow #### Conclusions - Spring O₂ depletion driven by a combination of climatic and biological factors - Surface chlorophyll explains most of the variation in early season O_2 depletion but is not related to summer hypoxia, suggesting later season organic production key to summer hypoxia - Future modeling work will better elucidate mechanisms